

About This Book

 Unit testing is often overlooked, yet it’s essential for building reliable and
maintainable React applications. This book is a practical guide to
mastering React Testing Library and Jest, helping you write tests with
confidence.

 By the end of this book, you’ll know what to test, how to test, and why
testing matters. You'll learn to prevent regressions, improve code stability,
and integrate testing seamlessly into your development workflow.

 Whether you're a beginner or an experienced React developer, this
book will give you the skills and real-world examples to level up your
testing game.

Copyright Notice

Copyright © 2025 Jumana Salhab

All rights reserved.

No part of this book may be copied, reproduced, stored in a retrieval
system, or transmitted in any form or by any means—electronic,
mechanical, photocopying, recording, or otherwise—without the prior
written permission of the author.

This book is licensed for personal use only. Unauthorized distribution,
resale, or reproduction is strictly prohibited.

Table of contents

Introduction
Accessing the Code Examples

Chapter 1: Introduction to React Testing Library and Jest
Types of Testing
Why is Testing Important?
What to Test in React Applications
What NOT to Test in React Applications
The Pyramid of Testing in React.js

Overview of the Testing Pyramid
Explanation of the Screenshot
Breakdown of Each Layer in the Testing Pyramid
Balancing the Testing Pyramid in React

Unit Testing vs Integration Testing vs E2E
Chapter 2: Setting Up the Development Environment

1. Installing React Testing Library, Jest, and TypeScript
1.1 If You Are Using Create React App (CRA) (Deprecated in React 19)
1.2 If You Are Using Vite or Custom Setups
1.3 Explanation of Each Package

2. Configuring Jest for Non-CRA Projects
3. Running Tests for the First Time
4. Running a Specific Test File

Chapter 3: Understanding the testing Fundamentals
How to write meaningful tests for a React component
Steps to Write Unit Tests in React
The Render Function in React Testing Library

What is the Render Function?
Why is the Render Function Important?
Best Practices for Using the Render Function
Common Mistakes to Avoid

Choosing Appropriate Selectors and Queries
Understanding Query Methods
Choosing the Best Query for Each Case
Common Mistakes to Avoid

Arrange, Act, Assert pattern
What is the Arrange, Act, Assert Pattern?
Why use the AAA Pattern?
Applying the AAA Pattern in React Testing

Understanding test suites and test cases
What is a Test Suite?
What is a Test Case?
Structuring Test Suites and Test Cases
Advanced: Nested Test Suites
Setting Up and Tearing Down Test Suites
Common Mistakes to Avoid

Understanding Jest matchers
What Are Jest Matchers?
Common Jest Matchers

Chapter 4: Testing React Router in React with RTL and Jest
Mocking BrowserRouter in Tests

How to Mock BrowserRouter in Tests
Testing Components That Use useNavigate
Mocking Navigation in Tests
Testing Initial Route Rendering

Testing Navigation (useNavigate, <Link>, Redirects)
Testing <Link> Navigation
Testing Navigation Using useNavigate()
Testing Redirects (<Navigate> and useNavigate)

Testing Route Parameters (useParams)
Testing Components That Use useParams
Mocking useParams in Tests
Handling Missing or Invalid Parameters
Testing Components That Fetch Data Using useParams

Simulating Route Changes in Tests
Changing Routes Using MemoryRouter with initialEntries
Simulating Route Changes Using history.push()
Testing Components That React to Route Changes (useEffect)

Handling Protected Routes (Authentication & Redirects)
Basic Protected Route Setup and Testing
Testing Authenticated Access to Protected Routes

Testing Authentication with Context (AuthProvider)
Testing Role-Based Protected Routes

Testing Nested Routes & Layout Components
Understanding Nested Routes with Layout Components
Testing That the Layout Renders Correctly
Testing Nested Route Rendering
Testing Navigation Between Nested Routes
Handling Nested Route Redirects (Default Child Route)

Testing 404 & Not Found Routes
Setting Up a 404 Route in React Router
Testing 404 Route Handling
Ensuring Valid Routes Do NOT Show 404
Testing Redirects from Invalid Routes
Testing 404 Pages with Navigation Links

Debugging & Common Pitfalls in React Router Testing
Forgetting to Wrap Components with MemoryRouter
Testing Navigation Without Using userEvent.click()
Not Using initialEntries When Testing Route Rendering
Forgetting to Mock useNavigate() in Tests
Using getByText Instead of queryByText for Non-Existent Elements
Not Mocking API Calls When Testing Routes That Fetch Data
Infinite Redirects in Navigate Components
Not Handling Role-Based Redirects Properly

Chapter 5: Mocking Functions
What is Mocking?
How Mocking helps in Testing ?
When should you use Mocking?
Benefits of Mocking
Types of Mocking in Jest

Function Mocks (jest.fn())
Spying on Functions (jest.spyOn())
Module Mocks (jest.mock())
Partial Mocking (jest.requireActual())
Mocking Return Values (mockReturnValue, mockReturnValueOnce)
Mocking Implementations (mockImplementation ,
mockImplementationOnce)

Mocking Rejected Values (mockRejectedValue)
When to use each Mock Function in Jest ?

beforeEach vs AfterEach
Understanding beforeEach and afterEach
Why use beforeEach?
Why use afterEach?
When to use beforeEach and afterEach
Common Mistakes and Best Practices

beforeAll vs AfterAll
Understanding beforeAll and afterAll
Why use afterAll?
When to Use beforeAll and afterAll?
Common Mistakes and Best Practices

Chapter 6: Testing Async Operations
Testing async functions and promises

Understanding Async Functions and Promises in Testing
Best Practices for Testing Async Functions and Promises

Using waitFor
What is waitFor?
Why use waitFor?
Real-World Use Cases and Examples
Common Mistakes and How to Avoid Them
Best Practices for Using waitFor

Using waitForElementToBeRemoved
What is waitForElementToBeRemoved?
Why use waitForElementToBeRemoved?
Real-World Use Cases and Examples
Common Mistakes and How to Avoid Them
Best Practices for Using waitForElementToBeRemoved

Testing Promises and Async/Await Functions
Understanding Promises and Async/Await in Testing
Testing a Standalone Async Function
Testing an Async Function Inside a React Component
Best Practices for Testing Promises and Async/Await
Common Mistakes and How to Avoid Them

Mocking API calls and testing component behavior

Why Mock API Calls?
Ways to Mock API Calls in Tests
Mocking API Calls in an Async Function
Mocking API Calls Inside a React Component
Using msw (Mock Service Worker) for More Realistic API Mocking
Best Practices for Mocking API Calls

Testing Async State Updates and Side Effects
Testing Async State Updates in Components
Testing State Updates Due to User Interaction
Testing Side Effects With Timers
Testing Side Effects With Subscriptions and Cleanup
Testing State Updates With External Events

Using Jest's built-in async utilities
Using resolves and rejects to Test Promises
Why use resolves and rejects?
Controlling Timers with jest.useFakeTimers()
Fast-Forwarding Time with jest.advanceTimersByTime()
Extending Test Timeout with jest.setTimeout()
Retrying Flaky Async Tests with jest.retryTimes()

Mocking External Dependencies and API Responses in Jest
Mocking API Calls Using Jest Mocks (jest.mock())
Mocking fetch for Network Requests
Mocking Third-Party Libraries
Mocking Browser APIs
Mocking WebSockets or Event Listeners

Handling async errors and timeouts in tests
Testing Error Handling in Async Functions
Testing Component Behavior When an API Fails
Handling Timeouts in Async Tests
Simulating Network Errors in Tests
Testing Retry Logic for API Calls

Chapter 7: Testing Hooks and Custom React Hooks
Writing tests for custom React hooks

Testing Hooks with Side Effects
Testing Hooks with Async State Updates
Testing Hooks That Change Based on Props

Understanding renderHook() in React Testing Library
Testing Hooks with Dependencies
Testing Hooks That Use Side Effects (useEffect)
Testing Hooks with Props (rerender())
Testing Async Hooks (waitForNextUpdate())

Understanding act() in React Testing Library
Why Do We Need act()?
Using act() in Custom Hook Tests
Using act() in Component Tests
Using act() for Async State Updates
Common Mistakes When Using act()
When not to use act()

Understanding rerender() in React Testing Library
How rerender() Works
Using rerender() to Test Hooks with Dependencies
Using rerender() to Test Components with Changing Props
Testing Hooks That Update Based on Prop Changes
Common Mistakes and How to Avoid Them

Understanding waitForNextUpdate() in React Testing Library
How waitForNextUpdate() Works
Basic Syntax
Using waitForNextUpdate() to Test Async State Updates
Using waitForNextUpdate() with SetTimeout or Intervals
Testing a Hook That Fetches Data on Interval
Common Mistakes and How to Avoid Them

Understanding toBe() vs toEqual() in Jest
Understanding toBe()
Understanding toEqual()
When to Use toBe() vs toEqual() in Tests
Real-World Example: Testing a Custom Hook
Common Mistakes and How to Fix Them

Testing Hooks That Use Context (useContext)
Understanding useContext in Hooks
Testing Hooks That Depend on Context Updates
Testing a Component That Uses Context
Common Mistakes and How to Fix Them

When to Use useContext Testing Approaches
Chapter 8: Testing React Query with Jest and React Testing Library

Why Testing React Query is Different from Regular State Management
Mocking React Query API Calls in Tests

Approach 1: Mocking API Calls with Mock Service Worker (MSW)
Approach 2: Using Jest Mocks Instead of MSW

Testing React Query in a .ts File not .tsx
Why Does This Error Occur?
How to Fix This Issue
Complete Test Setup for a React Query Hook in a .ts File

Testing Query States (Loading, Error, Success, Empty States)
Understanding React Query States
Testing the Loading State
Testing the Success State
Testing the Error State
Testing the Empty State
Best Practices for Testing React Query States

Verifying Cache Behavior and Background Refetching
How React Query Caches Data
Testing Cached Data Persistence
Testing Background Refetching
Testing Cache Invalidation and Query Refetching
Best Practices for Testing Cache and Background Refetching
- Use QueryClient to configure caching behavior in tests.
- Always reset the cache before each test to prevent stale data leaks.
- Use await waitFor() when testing background updates.
- Mock multiple API responses to verify data changes over time.
- Use invalidateQueries() to trigger refetches in controlled tests.

Testing Mutations and Query Invalidation
Understanding Mutations in React Query
Testing Mutations (Adding Data)
Testing Mutations (Deleting Data)
Testing Error Handling in Mutations

Chapter 9: Testing Redux in React with Jest and React Testing Library
Why Test Redux?
Testing Redux Reducers

Why Test Redux Reducers?
Setting Up Tests for Redux Reducers
Writing Unit Tests for Reducers
Best Practices for Testing Reducers

Testing Redux Actions and Thunks
Why Test Redux Actions and Thunks?
Testing Synchronous Redux Actions
1. Define Test Suite
2. Test Case: Creating an Add Todo Action
Testing Asynchronous Redux Thunks
Best Practices for Testing Redux Actions and Thunks
Common Mistakes to Avoid

Testing Redux Store Integration in React Components.
Why Test Redux Store Integration?
Setting Up a Redux-Connected Component for Testing
How to Test Redux-Connected Components
Best Practices for Testing Redux-Connected Components
Common Mistakes to Avoid

Mocking API Calls in Redux Async Thunks
Why Mock API Calls in Redux Thunks?
Example: Redux Async Thunk for Fetching Todos
Mocking API Calls in Redux Async Thunk Tests
Best Practices for Testing Redux Async Thunks
Common Mistakes to Avoid

Using Redux Testing Utilities
Why use Redux Testing Utilities?
Setting Up a Test Redux Store
Using Redux Test Store in Tests
Testing Async Thunks with Redux Test Store
Best Practices for Using Redux Testing Utilities
Common Mistakes to Avoid

Chapter 10: Best Practices and Tips for Effective Testing
Choosing the Right Query in React Testing Library (RTL)

Preferred Queries (Use These First)
Secondary Queries (Use If No Labels or Roles Exist)
Fallback Queries (Use Only When Necessary)

Summary: Best Practices for Selecting the Right Query
Writing Clean and Maintainable Tests

Keep Tests Focused and Concise
Follow the Given-When-Then Structure
Avoid Test Duplication
Use Meaningful Assertions
Clean Up After Each Test

Naming Conventions and Descriptions for Tests
General Naming Conventions
Structuring Test Descriptions
Recommended Naming Pattern for it Blocks
Use Meaningful test or it Descriptions
Naming Convention for Test Variables and Mocks
Example of a Well-Structured Test Suite
Common Mistakes to Avoid

Organizing Test Files and Test Suites
General Folder Structure for Tests
Grouping Tests Within a File Using describe
Organizing Tests by Type
Skipping and Running Specific Tests

The “it.each” Command in Jest
What is it.each?
Basic Syntax of it.each
Using it.each for Component Testing
Using it.each with Multiple Assertions
Using it.each for API Calls and Error Handling
Using it.each with Objects for Better Readability
Common Mistakes and How to Avoid Them

Debugging and Troubleshooting Tests in Jest & React Testing Library
Running Tests in Watch Mode
Using only and skip to Isolate Tests
Using console.log and debug() for Debugging
Using React Testing Library’s screen.debug()
Handling Asynchronous Test Failures
Checking for Incorrect Queries
Running Tests with Verbose Output

Debugging Mock Functions
Flaky Test Troubleshooting Checklist

Chapter 11: Enforcing Best Practices with ESLint Rules
Why Linting Matters in Testing
Essential ESLint Rules for Writing Better Tests
Configuring ESLint for Jest and React Testing Library
Common Mistakes ESLint Can Catch in Test Files
Automating Test Best Practices with ESLint

Chapter 12: Test Coverage and Reporting
What Is Test Coverage, and Why Does It Matter?
Understanding Coverage Metrics
Generating a Coverage Report Using Jest
Improving Test Coverage While Avoiding Unnecessary Tests
Using Coverage Reports to Identify Untested Code

Access the Code Examples

Introduction
 When I first started learning unit testing, I struggled to find comprehensive
resources that covered all aspects of testing in a clear and practical way. Most
tutorials were either too theoretical or lacked fully working examples. At the
beginning of my career, I worked at companies where unit testing wasn’t a
priority at all. Writing tests felt like an optional or unnecessary step—until I
joined a company that took unit testing seriously.

At first, it was overwhelming. I had so many questions:

-​ What should I test?
-​ Should I test everything?
-​ How does testing actually work?

 I quickly realized that unit testing is more than just a "nice-to-have"—it’s a
crucial part of building reliable applications. But without the right guidance,
getting started can feel intimidating. That’s exactly why I wrote this book—to
give developers like you a clear, structured, and practical approach to unit
testing in React.

Why This Book?

 Software development has evolved rapidly, making reliability, scalability, and
maintainability more important than ever. React has become one of the most
popular libraries for building interactive user interfaces, but as applications
grow in complexity, so does the risk of bugs, regressions, and unexpected
failures. Unit testing plays a vital role in preventing these issues and ensuring
that your application remains stable and maintainable over time.

 This book is designed to be a practical, hands-on guide to unit testing in
React. Whether you're just getting started or looking to level up your skills,
you'll find everything you need to confidently write effective and meaningful
tests. We’ll focus on React Testing Library and Jest, covering everything from
fundamental concepts to advanced testing strategies—all with real-world
examples and fully working projects that you can use and even add to your
portfolio.

Why Testing Matters

 Testing is often overlooked or treated as an afterthought in software
development. Many developers hesitate to write tests, perceiving them as
time-consuming or unnecessary for small projects. However, investing in
tests early in the development cycle saves time, prevents costly production
bugs, and increases developer confidence when making changes.

In this book, we’ll break down why testing is crucial for React applications and
how it contributes to:

-​ Code stability and reliability – Catching errors before they reach
production.

-​ Maintainability – Making refactoring easier without the fear of breaking
functionality.

-​ Developer confidence – Deploying new features with fewer surprises.
-​ Faster debugging – Pinpointing issues quickly when things go wrong.

By learning to write meaningful and effective tests, you’ll gain the ability to
build robust and maintainable React applications with confidence.

Who This Book Is For

 This book is designed for React developers of all levels who want to improve
their testing skills:

-​ Beginners – Learning how to write tests for the first time.

-​ Experienced Developers – Refining testing strategies for professional
projects.

How to Use This Book

Each chapter includes:

-​ Clear explanations – Breaking down concepts in a beginner-friendly way.

-​ Practical examples – Real-world use cases to demonstrate testing
techniques.

-​ Downloadable example projects – Fully functional applications with unit
tests, available for download via a dedicated Notion page. You can
explore, modify, and use them to practice writing tests and even add them
to your portfolio.

 This is not just a theoretical book—it’s a practical roadmap to mastering unit
testing in React. Whether you’re building personal projects or working on
large-scale applications, the skills you gain here will help you write high-quality,
bug-free, and maintainable React code.

Let’s dive in and make testing an integral part of your development workflow!

Accessing the Code Examples

 To help you put everything into practice, I’ve included fully working projects
with unit tests that demonstrate the concepts covered in this book. These
projects are available for download and hands-on experimentation.

 You can find them in the final chapter, where I provide a detailed guide on
accessing and running them. The examples are structured to give you a
hands-on approach, allowing you to modify the tests and experiment with
different scenarios.

👉 Make sure to check the last chapter to download and explore the
example projects!

	About This Book
	Table of contents
	Introduction

